Кетогенная диета, боль и воспаление. Суставы.

Ketogenic Diet, Pain and Inflammation:

Postulated Mechanisms

Множественные гипотезы лежат в основе теоретически обоснованных гипоаллергических и противовоспалительных эффектов кетогенной диеты. Здесь мы выделим четыре основных теоретически обоснованных механизма:

  1. Как и приступы эпилепсии, хроническая боль, как полагают, связана с повышенной возбудимостью нейронов; для боли это может включать периферические и / или центральные нейроны. 6, 7 Таким образом, есть некоторые сходство базовой биологии.
  2. Противосудорожные препараты часто назначают для невропатической боли, которая плохо реагирует на типичные обезболивающие препараты (см. ниже). Логически, из этого можно сделать вывод, что если есть общности в действиях противосудорожных препаратов и кетогенной диеты, последняя должна иметь некоторое влияние и на нейропатические боли.
  3. Снижение гликолитического метаболизма, по-видимому, является противосудорожным, независимо от того, достигается ли голодом, ограничением калорийности, высоким содержанием жира и ограничением углеводов (кетогенная диета, модифицированная диета Аткинса), 4, 5 или специфически блокирующий гликолиз с 2-дезоксиглюкозой. 8 Параллельно голодание и 2-деоксиглюкоза являются одновременно анальгетиками, 9, 10, поэтому кетогенная диета также может иметь обезболивающий эффект.
  4. Нейромодулятор аденозин может быть обезболивающим 11, 12 и участвует в эффектах акупунктуры, 13, 14 идет накопление фактов, что метаболические изменения в результате таких режимов таких как голодание, кетогенная диета и присутствие 2-дезоксиглюкозы, усиливают сигнализацию аденозина. 15, 16, 17, 18, 19 Недавние данные свидетельствуют о том, что физические упражнения могут лечить невропатические боли через механизм, в основании которого задействован аденозин. 20

Несмотря на эти дублирования и клинический потенциал, мало изучалась прямая взаимосвязь между кетогенными диетами и болью. Недавно боль была особо выделена в обзоре неврологических расстройств, которые следует учитывать при метаболической терапии 21 ; Очевидно, что лечение боли и воспаления является распространенной и неудовлетворенной потребностью. Здесь мы представляем доказательства клинических и фундаментальных исследований, включая положительные и отрицательные результаты наших лаборатория, идентифицирующия кетогенные диеты как платформу, заслуживающую дальнейшей оптимизации и исследования.

Ссылки:

  1. Elliott AM, Smith BH, Penny KI, et al. The epidemiology of chronic pain in the community. Lancet. 1999; 354:1248–1252. [PubMed: 10520633]
  2. Becker N, Bondegaard-Thomsen A, Olsen AK, et al. Pain epidemiology and health related quality of life in chronic non-malignant pain patients referred to a Danish multidisciplinary pain center. Pain. 1997; 73:393–400. [PubMed: 9469530]
  3. Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization study in primary care. J Am Med Assoc. 1998; 280:147–151.
  4. Wilder RM. The effects of ketonemia on the course of epilepsy. Mayo Clin Bull. 1921; 2:307.
  5. Wilder RM. High fat diets in epilepsy. Mayo Clin Bull. 1921; 2:308.
  6. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983; 306:686–688. [PubMed: 6656869]
  7. Raja SN, Meyer RA, Campbell JN. Peripheral mechanisms of somatic pain. Anesthesiology. 1988; 68:571–590. [PubMed: 3281512]
  8. Stafstrom CE, Ockuly JC, Murphree L, et al. Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann Neurol. 2009; 65:435–447. [PubMed: 19399874]
  9. Fisher MC, Bodnar RJ. 2-Deoxy-D-glucose antinociception and serotonin receptor subtype antagonists: test-specific effects in rats. Pharmacol Biochem Behav. 1992; 43:1241–1246. [PubMed: 1475308]
  10. delosSantos-Arteaga M, Sierra-Domínguez SA, Fontanella GH, et al. Analgesia induced by dietary restriction is mediated by the κ-opioid system. J Neurosci. 2003; 23:11120–11126. [PubMed: 14657170]
  11. Yarbrough GG, McGuffin-Clineschmidt JC. In vivo behavioral assessment of central nervous system purinergic receptors. Eur J Pharmacol. 1981; 76:137–144. [PubMed: 6895875]
  12. Schmidt AP, Böhmer AE, Antunes C, et al. Anti-nociceptive properties of the xanthine oxidase inhibitor allopurinol in mice: role of A1 adenosine receptors. Br J Pharmacol. 2009; 156:163–172. [PubMed: 19133997]13. Goldman N, Chen M, Fujita T, et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci. Jul.2010 13:883–888. [PubMed: 20512135]
  13. Goldman N, Chen M, Fujita T, et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci. Jul.2010 13:883–888. [PubMed: 20512135]
  14. Takano T, Chen X, Luo F, et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain. 2012; 13:1215–1223. [PubMed: 23182227]
  15. Zhao YT, Tekkök S, Krnjević K. 2-Deoxy-D-glucose-induced changes in membrane potential, input resistance, and excitatory postsynaptic potentials of CA1 hippocampal neurons. Can J Physiol Pharmacol. 1997; 75:368–374. [PubMed: 9250370]
  16. Minor TR, Rowe MK, Soames-Job RF, Ferguson EC. Escape deficits induced by inescapable shock and metabolic stress are reversed by adenosine receptor antagonists. Behav Brain Res. 2001; 120:203–212. [PubMed: 11182168]
  17. Kawamura M Jr, Ruskin DN, Masino SA. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors and KATP channels. J Neurosci. 2010; 30:3886–3895. [PubMed: 20237259]
  18. Jinka TR, Carlson ZA, Moore JT, Drew KL. Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats. Psychopharmacology. 2010; 209:217–224. [PubMed: 20186398]
  19. Masino SA, Li T, Theofilas P, et al. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest. 2011; 121:2679–2683. [PubMed: 21701065]
  20. Martins DF, Mazzardo-Martins L, Soldi F, et al. High-intensity swimming exercise reduces neuropathic pain in an animal model of complex regional pain syndrome type I: evidence for a role of the adenosinergic system. Neuroscience. 2013; 234:69–76. [PubMed: 23291454]
  21. Ruskin DN, Masino SA. The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy. Front Neurosci. 2012; 6:33. [PubMed: 22470316]
  22. Ruskin DN, Kawamura M Jr, Masino SA. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PLoS One. 2009; 4:e8349. [PubMed: 20041135]
    23. Ruskin DN, Suter TACS, Ross JL, Masino SA. Ketogenic diets and thermal pain: dissociation of hypoalgesia, elevated ketones, and lowered glucose in rats. J Pain. 2013 in press. 10.1016/j.jpain. 2012.12.015
  23. Ruskin DN, Ross JL, Kawamura M Jr, et al. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington’s disease. Physiol Behav. 2011; 103:501–507. [PubMed: 21501628]
  24. Ruskin DN, Ross JL, Kawamura M Jr, et al. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington’s disease. Physiol Behav. 2011; 103:501–507. [PubMed: 21501628]
  25. Ziegler DR, Gamaro GD, Araújo E, et al. Nociception and locomotor activity are increased in ketogenic diet fed rats. Physiol Behav. 2005; 84:421–427. [PubMed: 15763579]
  26. Likhodii SS, Musa K, Mendonca A, et al. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia. 2000; 41:1400–1410. [PubMed: 11077453]
  27. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004; 70:309–319. [PubMed: 14769489]
  28. Kim DY, Davis LM, Sullivan PG, et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem. 2007; 101:1316–1326. [PubMed: 17403035]
  29. Kim DY, Vallejo J, Rho JM. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J Neurochem. 2010; 114:130–141. [PubMed: 20374433]
  30. Noh HS, Hah YS, Nilufar R, et al. Acetoacetate protects neuronal cells from oxidative glutamate toxicity. J Neurosci Res. 2006; 83:702–709. [PubMed: 16435389]
    31.
  31. Maalouf M, Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res. 2008; 86:3322–3330. [PubMed: 18646208]
  32. Maalouf M, Sullivan PG, Davis L, et al. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience. 2007; 145:256–264. [PubMed: 17240074]
  33. Haces ML, Hernandez-Fonseca K, Medina-Campos ON, et al. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol. 2008; 211:85–96. [PubMed: 18339375]
  34. Sullivan PG, Rippy NA, Dorenbos K, et al. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol. 2004; 55:576–580. [PubMed: 15048898]
  35. Kim DY, Hao J, Liu R, et al. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS One. 2012; 7:e35476. [PubMed: 22567104]
  36. Tendler D, Lin S, Yancy WS Jr, et al. The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci. 2007; 52:589–593. [PubMed: 17219068]
  37. Pérez-Guisado J, Muñoz-Serrano A. The effect of the Spanish Ketogenic Mediterranean Diet on nonalcoholic fatty liver disease: a pilot study. J Med Food. 2011; 14:677–680. [PubMed: 21688989]
  38. Schugar RC, Crawford PA. Low-carbohydrate ketogenic diets, glucose homeostasis, and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2012; 15:374–380. [PubMed: 22617564]
  39. Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Perixosome proliferator-activated receptors. Pharmacol Rev. 2006; 58:726–741. [PubMed: 17132851]
  40. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol. 2004; 483:79–93.[PubMed: 14709329]
  41. 41. Cuzzocrea S, Mazzon E, Dugo L, et al. Reduction in the evolution of murine type II collagen-induced arthritis by treatment with rosiglitazone, a ligand of the peroxisome proliferator-activatedreceptor gamma. Arthritis Rheum. 2003; 48:3544–3556. [PubMed: 14674008]
  42. LoVerme J, Fu J, Astarita G, et al. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol. 2005;67:15–19. [PubMed: 15465922]
  43. Cuzzocrea S, Mazzon E, Di Paolo R, et al. The role of the peroxisome proliferator-activated receptor-α (PPAR- α) in the regulation of acute inflammation. J Leukoc Biol. 2006; 79:999–1010. [PubMed: 16501055]
  44. Blanquart C, Barbier O, Fruchart JC, et al. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol. 2003; 85:267–273. [PubMed: 12943712]
  45. Kowaluk EA, Jarvis MF. Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs. 2000; 9:551–564.
  46. Linden J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Ann Rev Pharmacol Toxicol. 2001; 41:775–787. [PubMed: 11264476]
  47. Ngamsri KC, Wagner R, Vollmer I, et al. Adenosine receptor A1 regulates polymorphonuclear cell trafficking and microvascular permeability in lipopolysaccharide-induced lung injury. J Immunol. 2010; 185:4374–4384. [PubMed: 20729330]
  48. Wang J, Huxley VH. Adenosine A2A receptor modulation of juvenile female rat skeletal muscle microvessel permeability. Am J Physiol Heart Circ Physiol. 2006; 291:H3094–H3105. [PubMed:16815983]
  49. Sorkin LS, Moore J, Boyle DL, et al. Regulation of peripheral inflammation by spinal adenosine:role of somatic afferent fibers. Exp Neurol. 2003; 184:162–168. [PubMed: 14637089]
  50. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006; 52:77–92. [PubMed: 17015228]
  51. Portenoy RK, Foley KM, Inturrisi CE. The nature of opioid responsiveness and its implications for neuropathic pain: new hypotheses derived from studies of opioid infusions. Pain. 1990; 43:273–286. [PubMed: 1705692]
  52. Dickenson AH, Suzuki R. Opioids in neuropathic pain: clues from animal studies. Eur J Pain. 2005; 9:113–116. [PubMed: 15737797]
  53. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988; 33:87–107. [PubMed: 2837713]
  54. Uhlemann ER, Neims AH. Anticonvulsant properties of the ketogenic diet in mice. J Pharmacol Exp Ther. 1972; 180:231–238. [PubMed: 5010672]
  55. Samala R, Willis S, Borges K. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models. Epilepsy Res. 2008; 81:119–127. [PubMed: 18565731]
  56. Hartman AL, Zheng X, Bergbower E, et al. Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia. 2010; 51:1395–1402. [PubMed: 20477852]
  57. Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013; 110:3507–3512. [PubMed: 23401516]
  58. Rho, JM.; Zupec-Kania, B.; Masino, SA. Ketogenic diet and epilepsy: the role of adenosine. In: Masino, SA.; Boison, D., editors. Adenosine: A Key Link between Metabolism and Brain Activity. New York: Springer; 2013.
  59. Phillips CJ. Economic burden of chronic pain. Expert Rev Pharmacoecon Outcomes Res. 2006; 6:591–601. [PubMed: 20528505]
  60. Morrison PF, Pyzik PL, Hamdy R, et al. The influence of concurrent anticonvulsants on the efficacy of the ketogenic diet. Epilepsia. 2009; 50:1999–2001. [PubMed: 19389152]
  61. Poplawski MM, Mastaitis JW, Isoda F, et al. Reversal of diabetic nephropathy by a ketogenic diet. PLoS One. 2011; 6:e18604. [PubMed: 21533091]
  62. Atladottir HO, Thorsen P, Schendel DE, et al. Association of hospitalization for infection in childhood with diagnosis of autism spectrum disorders: a Danish cohort study. Arch Pediatradolesc Med. 2010; 164:470–477. [PubMed: 20439799]
  63. Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry. 2007; 16:61–66. [PubMed: 16932856]
  64. Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007; 184:69–91. [PubMed: 17222916]
  65. Pandis D, Scarmeas N. Seizures in Alzheimer disease: clinical and epidemiological data. Epilepsy Curr. 2012; 12:184–187. [PubMed: 23118603]
  66. Cai H, Cong WN, Ji S, et al. Metabolic dysfunction in Alzheimer’s disease and related
    neurodegenerative disorders. Curr Alzheimer Res. 2012; 9:5–17. [PubMed: 22329649]
  67. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012; 3:59. [PubMed: 22509165]
  68. Yau PL, Castro MG, Tagani A, et al. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012; 130:e856–864. [PubMed: 22945407]

1,062 просмотров всего, 1 просмотров сегодня

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *