высокие уровни кетоновых тел помогают кишечнику поддерживать большой пул взрослых стволовых клеток

Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet

https://www.cell.com/cell/fulltext/S0092-8674(19)30848-7?fbclid=IwAR3Yz-cuxmrYQcg0zDfM49jfbKkk3ukC88E1FCYeHWijuEXnqsKVmC91-6A

Неожиданный эффект кето диеты

Биологи Массачусетского технологического института обнаружили неожиданный эффект кетогенной или богатой жирами диеты: они доказали, что высокие уровни кетоновых тел (молекул, образующихся при расщеплении жира) помогают кишечнику поддерживать большой пул взрослых стволовых клеток, которые имеют решающее значение для поддержания здоровой слизистой оболочки кишечника. Исследователи также обнаружили, что кишечные стволовые клетки производят необычно высокий уровень кетоновых тел даже при отсутствии диеты с высоким содержанием жиров. Эти кетоновые тела активируют хорошо известный сигнальный путь, называемый Notch, который, как ранее было доказано, помогает регулировать дифференцировку стволовых клеток . «Кетоновые тела являются одним из первых примеров того, как метаболит определяет судьбу стволовых клеток в кишечнике», — говорит Омер Йилмаз ( Omer Yilmaz ), профессор биологии Айзена и Чанга по развитию карьеры и член Института интеграционных исследований рака им. Коха при Массачусетском технологическом институте. «Кетоновые тела, которые играют важную роль в поддержании энергии во время стресса при питании, используя путь Notch для улучшения функции стволовых клеток. Изменения уровней кетоновых тел при различных состояниях питания или диетах позволяют стволовым клеткам адаптироваться к разной физиологии.» В исследовании на мышах было обнаружено, что кетогенная диета дала кишечным стволовым клеткам регенеративный импульс, который позволил им лучше восстанавливаться после повреждения слизистой оболочки кишечника, по сравнению со стволовыми клетками мышей на обычном питании.

Из дискуссий на ФБ:

отсутствие кетоза – меньше 0,2
слабый кетоз- 0,2 – 0,5
кетоз пищевой 0,5 – 3,0
кетоз после интенсивного спорта 2,5 – 3,5
кетоз в следствии голодания 3,0 – 6,0
кетоацидоз, болезненное состояние, в основном при диабете, отсутствии инсулина в крови 15 — 20
От 7 до 15 это переход к кетоацедозу, не диабетику достичь практически невозможно.


Далее в источнике: https://proautism.info/keto-diet/


Источник: https://proautism.info/keto-diet/

References

    • Adijanto J.
    • Du J.
    • Moffat C.
    • Seifert E.L.
    • Hurle J.B.
    • Philp N.J.
    The retinal pigment epithelium utilizes fatty acids for ketogenesis.

    J. Biol. Chem. 2014; 289: 20570-20582

    • Agathocleous M.
    • Meacham C.E.
    • Burgess R.J.
    • Piskounova E.
    • Zhao Z.
    • Crane G.M.
    • Cowin B.L.
    • Bruner E.
    • Murphy M.M.
    • Chen W.
    • et al.
    Ascorbate regulates haematopoietic stem cell function and leukaemogenesis.

    Nature. 2017; 549: 476-481

    • Arts J.
    • King P.
    • Mariën A.
    • Floren W.
    • Beliën A.
    • Janssen L.
    • Pilatte I.
    • Roux B.
    • Decrane L.
    • Gilissen R.
    • et al.
    JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity.

    Clin. Cancer Res. 2009; 15: 6841-6851

    • Barish G.D.
    • Narkar V.A.
    • Evans R.M.
    PPAR delta: a dagger in the heart of the metabolic syndrome.

    J. Clin. Invest. 2006; 116: 590-597

    • Barker N.
    • van Es J.H.
    • Kuipers J.
    • Kujala P.
    • van den Born M.
    • Cozijnsen M.
    • Haegebarth A.
    • Korving J.
    • Begthel H.
    • Peters P.J.
    • Clevers H.
    Identification of stem cells in small intestine and colon by marker gene Lgr5.

    Nature. 2007; 449: 1003-1007

    • Barker N.
    • Ridgway R.A.
    • van Es J.H.
    • van de Wetering M.
    • Begthel H.
    • van den Born M.
    • Danenberg E.
    • Clarke A.R.
    • Sansom O.J.
    • Clevers H.
    Crypt stem cells as the cells-of-origin of intestinal cancer.

    Nature. 2009; 457: 608-611

    • Beumer J.
    • Clevers H.
    Regulation and plasticity of intestinal stem cells during homeostasis and regeneration.

    Development. 2016; 143: 3639-3649

    • Beyaz S.
    • Mana M.D.
    • Roper J.
    • Kedrin D.
    • Saadatpour A.
    • Hong S.J.
    • Bauer-Rowe K.E.
    • Xifaras M.E.
    • Akkad A.
    • Arias E.
    • et al.
    High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.

    Nature. 2016; 531: 53-58

    • Biton M.
    • Haber A.L.
    • Rogel N.
    • Burgin G.
    • Beyaz S.
    • Schnell A.
    • Ashenberg O.
    • Su C.W.
    • Smillie C.
    • Shekhar K.
    • et al.
    T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation.

    Cell. 2018; 175: 1307-1320.e22

    • Blecher-Gonen R.
    • Barnett-Itzhaki Z.
    • Jaitin D.
    • Amann-Zalcenstein D.
    • Lara-Astiaso D.
    • Amit I.
    High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states.

    Nat. Protoc. 2013; 8: 539-554

    • Cimmino L.
    • Dolgalev I.
    • Wang Y.
    • Yoshimi A.
    • Martin G.H.
    • Wang J.
    • Ng V.
    • Xia B.
    • Witkowski M.T.
    • Mitchell-Flack M.
    • et al.
    Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression.

    Cell. 2017; 170: 1079-1095.e20

    • Cotter D.G.
    • Schugar R.C.
    • Crawford P.A.
    Ketone body metabolism and cardiovascular disease.

    Am. J. Physiol. Heart Circ. Physiol. 2013; 304: H1060-H1076

    • de la Cruz Bonilla M.
    • Stemler K.M.
    • Taniguchi C.M.
    • Piwnica-Worms H.
    Stem cell enriched-epithelial spheroid cultures for rapidly assaying small intestinal radioprotectors and radiosensitizers in vitro.

    Sci. Rep. 2018; 8: 15410

    • Degirmenci B.
    • Valenta T.
    • Dimitrieva S.
    • Hausmann G.
    • Basler K.
    GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells.

    Nature. 2018; 558: 449-453

    • Dixit A.
    • Parnas O.
    • Li B.
    • Chen J.
    • Fulco C.P.
    • Jerby-Arnon L.
    • Marjanovic N.D.
    • Dionne D.
    • Burks T.
    • Raychowdhury R.
    • et al.
    Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens.

    Cell. 2016; 167: 1853-1866.e17

    • Dobin A.
    • Davis C.A.
    • Schlesinger F.
    • Drenkow J.
    • Zaleski C.
    • Jha S.
    • Batut P.
    • Chaisson M.
    • Gingeras T.R.
    STAR: ultrafast universal RNA-seq aligner.

    Bioinformatics. 2013; 29: 15-21

    • Durand A.
    • Donahue B.
    • Peignon G.
    • Letourneur F.
    • Cagnard N.
    • Slomianny C.
    • Perret C.
    • Shroyer N.F.
    • Romagnolo B.
    Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1).

    Proc. Natl. Acad. Sci. USA. 2012; 109: 8965-8970

    • el Marjou F.
    • Janssen K.P.
    • Chang B.H.
    • Li M.
    • Hindie V.
    • Chan L.
    • Louvard D.
    • Chambon P.
    • Metzger D.
    • Robine S.
    Tissue-specific and inducible Cre-mediated recombination in the gut epithelium.

    Genesis. 2004; 39: 186-193

    • Faust G.G.
    • Hall I.M.
    SAMBLASTER: fast duplicate marking and structural variant read extraction.

    Bioinformatics. 2014; 30: 2503-2505

    • Finak G.
    • McDavid A.
    • Yajima M.
    • Deng J.
    • Gersuk V.
    • Shalek A.K.
    • Slichter C.K.
    • Miller H.W.
    • McElrath M.J.
    • Prlic M.
    • et al.
    MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.

    Genome Biol. 2015; 16: 278

    • Fre S.
    • Huyghe M.
    • Mourikis P.
    • Robine S.
    • Louvard D.
    • Artavanis-Tsakonas S.
    Notch signals control the fate of immature progenitor cells in the intestine.

    Nature. 2005; 435: 964-968

    • Garber M.
    • Yosef N.
    • Goren A.
    • Raychowdhury R.
    • Thielke A.
    • Guttman M.
    • Robinson J.
    • Minie B.
    • Chevrier N.
    • Itzhaki Z.
    • et al.
    A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals.

    Mol. Cell. 2012; 47: 810-822

    • Gonneaud A.
    • Turgeon N.
    • Boisvert F.M.
    • Boudreau F.
    • Asselin C.
    Loss of histone deacetylase Hdac1 disrupts metabolic processes in intestinal epithelial cells.

    FEBS Lett. 2015; 589: 2776-2783

    • Guo J.
    • Longshore S.
    • Nair R.
    • Warner B.W.
    Retinoblastoma protein (pRb), but not p107 or p130, is required for maintenance of enterocyte quiescence and differentiation in small intestine.

    J. Biol. Chem. 2009; 284: 134-140

    • Haber A.L.
    • Biton M.
    • Rogel N.
    • Herbst R.H.
    • Shekhar K.
    • Smillie C.
    • Burgin G.
    • Delorey T.M.
    • Howitt M.R.
    • Katz Y.
    • et al.
    A single-cell survey of the small intestinal epithelium.

    Nature. 2017; 551: 333-339

    • Haberland M.
    • Montgomery R.L.
    • Olson E.N.
    The many roles of histone deacetylases in development and physiology: implications for disease and therapy.

    Nat. Rev. Genet. 2009; 10: 32-42

    • Hsieh J.J.
    • Zhou S.
    • Chen L.
    • Young D.B.
    • Hayward S.D.
    CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex.

    Proc. Natl. Acad. Sci. USA. 1999; 96: 23-28

    • Huch M.
    • Dorrell C.
    • Boj S.F.
    • van Es J.H.
    • Li V.S.
    • van de Wetering M.
    • Sato T.
    • Hamer K.
    • Sasaki N.
    • Finegold M.J.
    • et al.
    In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.

    Nature. 2013; 494: 247-250

    • Igarashi M.
    • Guarente L.
    mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction.

    Cell. 2016; 166: 436-450

    • Ito K.
    • Carracedo A.
    • Weiss D.
    • Arai F.
    • Ala U.
    • Avigan D.E.
    • Schafer Z.T.
    • Evans R.M.
    • Suda T.
    • Lee C.H.
    • Pandolfi P.P.
    A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.

    Nat. Med. 2012; 18: 1350-1358

    • Johnson W.E.
    • Li C.
    • Rabinovic A.
    Adjusting batch effects in microarray expression data using empirical Bayes methods.

    Biostatistics. 2007; 8: 118-127

    • Kao H.Y.
    • Ordentlich P.
    • Koyano-Nakagawa N.
    • Tang Z.
    • Downes M.
    • Kintner C.R.
    • Evans R.M.
    • Kadesch T.
    A histone deacetylase corepressor complex regulates the Notch signal transduction pathway.

    Genes Dev. 1998; 12: 2269-2277

    • Kim T.H.
    • Escudero S.
    • Shivdasani R.A.
    Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells.

    Proc. Natl. Acad. Sci. USA. 2012; 109: 3932-3937

    • Kim T.H.
    • Li F.
    • Ferreiro-Neira I.
    • Ho L.L.
    • Luyten A.
    • Nalapareddy K.
    • Long H.
    • Verzi M.
    • Shivdasani R.A.
    Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity.

    Nature. 2014; 506: 511-515

    • Kim T.H.
    • Saadatpour A.
    • Guo G.
    • Saxena M.
    • Cavazza A.
    • Desai N.
    • Jadhav U.
    • Jiang L.
    • Rivera M.N.
    • Orkin S.H.
    • et al.
    Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells.

    Cell Rep. 2016; 16: 2053-2060

    • Kowalczyk M.S.
    • Tirosh I.
    • Heckl D.
    • Rao T.N.
    • Dixit A.
    • Haas B.J.
    • Schneider R.K.
    • Wagers A.J.
    • Ebert B.L.
    • Regev A.
    Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells.

    Genome Res. 2015; 25: 1860-1872

    • Langmead B.
    • Trapnell C.
    • Pop M.
    • Salzberg S.L.
    Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.

    Genome Biol. 2009; 10: R25

    • Leek J.T.
    • Johnson W.E.
    • Parker H.S.
    • Jaffe A.E.
    • Storey J.D.
    The sva package for removing batch effects and other unwanted variation in high-throughput experiments.

    Bioinformatics. 2012; 28: 882-883

    • Li B.
    • Dewey C.N.
    RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

    BMC Bioinformatics. 2011; 12: 323

    • Li J.
    • Ng E.K.
    • Ng Y.P.
    • Wong C.Y.
    • Yu J.
    • Jin H.
    • Cheng V.Y.
    • Go M.Y.
    • Cheung P.K.
    • Ebert M.P.
    • et al.
    Identification of retinoic acid-regulated nuclear matrix-associated protein as a novel regulator of gastric cancer.

    Br. J. Cancer. 2009; 101: 691-698

    • Lim J.S.
    • Ibaseta A.
    • Fischer M.M.
    • Cancilla B.
    • O’Young G.
    • Cristea S.
    • Luca V.C.
    • Yang D.
    • Jahchan N.S.
    • Hamard C.
    • et al.
    Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer.

    Nature. 2017; 545: 360-364

    • Lindemans C.A.
    • Calafiore M.
    • Mertelsmann A.M.
    • O’Connor M.H.
    • Dudakov J.A.
    • Jenq R.R.
    • Velardi E.
    • Young L.F.
    • Smith O.M.
    • Lawrence G.
    • et al.
    Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    Nature. 2015; 528: 560-564

    • Liu T.
    • Ortiz J.A.
    • Taing L.
    • Meyer C.A.
    • Lee B.
    • Zhang Y.
    • Shin H.
    • Wong S.S.
    • Ma J.
    • Lei Y.
    • et al.
    Cistrome: an integrative platform for transcriptional regulation studies.

    Genome Biol. 2011; 12: R83

    • McCarthy D.J.
    • Chen Y.
    • Smyth G.K.
    Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.

    Nucleic Acids Res. 2012; 40: 4288-4297

    • Metcalfe C.
    • Kljavin N.M.
    • Ybarra R.
    • de Sauvage F.J.
    Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration.

    Cell Stem Cell. 2014; 14: 149-159

    • Mihaylova M.M.
    • Sabatini D.M.
    • Yilmaz O.H.
    Dietary and metabolic control of stem cell function in physiology and cancer.

    Cell Stem Cell. 2014; 14: 292-305

    • Mihaylova M.M.
    • Cheng C.W.
    • Cao A.Q.
    • Tripathi S.
    • Mana M.D.
    • Bauer-Rowe K.E.
    • Abu-Remaileh M.
    • Clavain L.
    • Erdemir A.
    • Lewis C.A.
    • et al.
    Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging.

    Cell Stem Cell. 2018; 22: 769-778.e4

    • Muñoz J.
    • Stange D.E.
    • Schepers A.G.
    • van de Wetering M.
    • Koo B.K.
    • Itzkovitz S.
    • Volckmann R.
    • Kung K.S.
    • Koster J.
    • Radulescu S.
    • et al.
    The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4′ cell markers.

    EMBO J. 2012; 31: 3079-3091

    • Nakada D.
    • Levi B.P.
    • Morrison S.J.
    Integrating physiological regulation with stem cell and tissue homeostasis.

    Neuron. 2011; 70: 703-718

    • Narkar V.A.
    • Downes M.
    • Yu R.T.
    • Embler E.
    • Wang Y.X.
    • Banayo E.
    • Mihaylova M.M.
    • Nelson M.C.
    • Zou Y.
    • Juguilon H.
    • et al.
    AMPK and PPARdelta agonists are exercise mimetics.

    Cell. 2008; 134: 405-415

    • Newman J.C.
    • Verdin E.
    β-Hydroxybutyrate: A Signaling Metabolite.

    Annu. Rev. Nutr. 2017; 37: 51-76

    • Newman J.C.
    • Covarrubias A.J.
    • Zhao M.
    • Yu X.
    • Gut P.
    • Ng C.P.
    • Huang Y.
    • Haldar S.
    • Verdin E.
    Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice.

    Cell Metab. 2017; 26: 547-557.e8

    • Ootani A.
    • Li X.
    • Sangiorgi E.
    • Ho Q.T.
    • Ueno H.
    • Toda S.
    • Sugihara H.
    • Fujimoto K.
    • Weissman I.L.
    • Capecchi M.R.
    • Kuo C.J.
    Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche.

    Nat. Med. 2009; 15: 701-706

    • Oswald F.
    • Kostezka U.
    • Astrahantseff K.
    • Bourteele S.
    • Dillinger K.
    • Zechner U.
    • Ludwig L.
    • Wilda M.
    • Hameister H.
    • Knöchel W.
    • et al.
    SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway.

    EMBO J. 2002; 21: 5417-5426

    • Peregrina K.
    • Houston M.
    • Daroqui C.
    • Dhima E.
    • Sellers R.S.
    • Augenlicht L.H.
    Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions.

    Carcinogenesis. 2015; 36: 25-31

    • Puchalska P.
    • Crawford P.A.
    Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics.

    Cell Metab. 2017; 25: 262-284

    • Qi Z.
    • Li Y.
    • Zhao B.
    • Xu C.
    • Liu Y.
    • Li H.
    • Zhang B.
    • Wang X.
    • Yang X.
    • Xie W.
    • et al.
    BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes.

    Nat. Commun. 2017; 8: 13824

    • Ramírez F.
    • Ryan D.P.
    • Grüning B.
    • Bhardwaj V.
    • Kilpert F.
    • Richter A.S.
    • Heyne S.
    • Dündar F.
    • Manke T.
    deepTools2: a next generation web server for deep-sequencing data analysis.

    Nucleic Acids Res. 2016; 44: W160-5

    • Rickelt S.
    • Hynes R.O.
    Antibodies and methods for immunohistochemistry of extracellular matrix proteins.

    Matrix Biol. 2018; 71-72: 10-27

    • Rodríguez-Colman M.J.
    • Schewe M.
    • Meerlo M.
    • Stigter E.
    • Gerrits J.
    • Pras-Raves M.
    • Sacchetti A.
    • Hornsveld M.
    • Oost K.C.
    • Snippert H.J.
    • et al.
    Interplay between metabolic identities in the intestinal crypt supports stem cell function.

    Nature. 2017; 543: 424-427

    • Rognstad R.
    Rate-limiting steps in metabolic pathways.

    J. Biol. Chem. 1979; 254: 1875-1878

    • Sancho R.
    • Cremona C.A.
    • Behrens A.
    Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease.

    EMBO Rep. 2015; 16: 571-581

    • Sasaki N.
    • Sachs N.
    • Wiebrands K.
    • Ellenbroek S.I.
    • Fumagalli A.
    • Lyubimova A.
    • Begthel H.
    • van den Born M.
    • van Es J.H.
    • Karthaus W.R.
    • et al.
    Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon.

    Proc. Natl. Acad. Sci. USA. 2016; 113: E5399-E5407

    • Sato T.
    • Vries R.G.
    • Snippert H.J.
    • van de Wetering M.
    • Barker N.
    • Stange D.E.
    • van Es J.H.
    • Abo A.
    • Kujala P.
    • Peters P.J.
    • Clevers H.
    Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

    Nature. 2009; 459: 262-265

    • Sato T.
    • van Es J.H.
    • Snippert H.J.
    • Stange D.E.
    • Vries R.G.
    • van den Born M.
    • Barker N.
    • Shroyer N.F.
    • van de Wetering M.
    • Clevers H.
    Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts.

    Nature. 2011; 469: 415-418

    • Shimazu T.
    • Hirschey M.D.
    • Newman J.
    • He W.
    • Shirakawa K.
    • Le Moan N.
    • Grueter C.A.
    • Lim H.
    • Saunders L.R.
    • Stevens R.D.
    • et al.
    Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor.

    Science. 2013; 339: 211-214

    • Shoshkes-Carmel M.
    • Wang Y.J.
    • Wangensteen K.J.
    • Tóth B.
    • Kondo A.
    • Massasa E.E.
    • Itzkovitz S.
    • Kaestner K.H.
    Author Correction: Subepithelial telocytes are an important source of Wnts that supports intestinal crypts.

    Nature. 2018; 560: E29

    • Shroyer N.F.
    • Helmrath M.A.
    • Wang V.Y.
    • Antalffy B.
    • Henning S.J.
    • Zoghbi H.Y.
    Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis.

    Gastroenterology. 2007; 132: 2478-2488

    • Skarnes W.C.
    • Rosen B.
    • West A.P.
    • Koutsourakis M.
    • Bushell W.
    • Iyer V.
    • Mujica A.O.
    • Thomas M.
    • Harrow J.
    • Cox T.
    • et al.
    A conditional knockout resource for the genome-wide study of mouse gene function.

    Nature. 2011; 474: 337-342

    • Subramanian A.
    • Tamayo P.
    • Mootha V.K.
    • Mukherjee S.
    • Ebert B.L.
    • Gillette M.A.
    • Paulovich A.
    • Pomeroy S.L.
    • Golub T.R.
    • Lander E.S.
    • Mesirov J.P.
    Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

    Proc. Natl. Acad. Sci. USA. 2005; 102: 15545-15550

    • Tian H.
    • Biehs B.
    • Chiu C.
    • Siebel C.W.
    • Wu Y.
    • Costa M.
    • de Sauvage F.J.
    • Klein O.D.
    Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis.

    Cell Rep. 2015; 11: 33-42

    • Tinkum K.L.
    • Stemler K.M.
    • White L.S.
    • Loza A.J.
    • Jeter-Jones S.
    • Michalski B.M.
    • Kuzmicki C.
    • Pless R.
    • Stappenbeck T.S.
    • Piwnica-Worms D.
    • Piwnica-Worms H.
    Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Proc. Natl. Acad. Sci. USA. 2015; 112: E7148-E7154

    • van der Flier L.G.
    • van Gijn M.E.
    • Hatzis P.
    • Kujala P.
    • Haegebarth A.
    • Stange D.E.
    • Begthel H.
    • van den Born M.
    • Guryev V.
    • Oving I.
    • et al.
    Transcription factor achaete scute-like 2 controls intestinal stem cell fate.

    Cell. 2009; 136: 903-912

    • VanDussen K.L.
    • Carulli A.J.
    • Keeley T.M.
    • Patel S.R.
    • Puthoff B.J.
    • Magness S.T.
    • Tran I.T.
    • Maillard I.
    • Siebel C.
    • Kolterud Å.
    • et al.
    Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells.

    Development. 2012; 139: 488-497

    • Vooijs M.
    • Liu Z.
    • Kopan R.
    Notch: architect, landscaper, and guardian of the intestine.

    Gastroenterology. 2011; 141: 448-459

    • Wang Q.
    • Zhou Y.
    • Rychahou P.
    • Fan T.W.
    • Lane A.N.
    • Weiss H.L.
    • Evers B.M.
    Ketogenesis contributes to intestinal cell differentiation.

    Cell Death Differ. 2017; 24: 458-468

    • Wang B.
    • Rong X.
    • Palladino E.N.D.
    • Wang J.
    • Fogelman A.M.
    • Martin M.G.
    • Alrefai W.A.
    • Ford D.A.
    • Tontonoz P.
    Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis.

    Cell Stem Cell. 2018; 22: 206-220.e4

    • Yamaguchi M.
    • Tonou-Fujimori N.
    • Komori A.
    • Maeda R.
    • Nojima Y.
    • Li H.
    • Okamoto H.
    • Masai I.
    Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways.

    Development. 2005; 132: 3027-3043

    • Yan K.S.
    • Janda C.Y.
    • Chang J.
    • Zheng G.X.Y.
    • Larkin K.A.
    • Luca V.C.
    • Chia L.A.
    • Mah A.T.
    • Han A.
    • Terry J.M.
    • et al.
    Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Nature. 2017; 545: 238-242

    • Yang Q.
    • Bermingham N.A.
    • Finegold M.J.
    • Zoghbi H.Y.
    Requirement of Math1 for secretory cell lineage commitment in the mouse intestine.

    Science. 2001; 294: 2155-2158

    • Yilmaz O.H.
    • Katajisto P.
    • Lamming D.W.
    • Gültekin Y.
    • Bauer-Rowe K.E.
    • Sengupta S.
    • Birsoy K.
    • Dursun A.
    • Yilmaz V.O.
    • Selig M.
    • et al.
    mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.

    Nature. 2012; 486: 490-495

    • Yin X.
    • Farin H.F.
    • van Es J.H.
    • Clevers H.
    • Langer R.
    • Karp J.M.
    Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny.

    Nat. Methods. 2014; 11: 106-112

    • Zecchini V.
    • Domaschenz R.
    • Winton D.
    • Jones P.
    Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells.

    Genes Dev. 2005; 19: 1686-1691

    • Zhang M.
    • Behbod F.
    • Atkinson R.L.
    • Landis M.D.
    • Kittrell F.
    • Edwards D.
    • Medina D.
    • Tsimelzon A.
    • Hilsenbeck S.
    • Green J.E.
    • et al.
    Identification of tumor-initiating cells in a p53-null mouse model of breast cancer.

    Cancer Res. 2008; 68: 4674-4682

    • Zhao M.
    • Chen X.
    • Gao G.
    • Tao L.
    • Wei L.
    RLEdb: a database of rate-limiting enzymes and their regulation in human, rat, mouse, yeast and E. coli.

    Cell Res. 2009; 19: 793-795

    • Zimberlin C.D.
    • Lancini C.
    • Sno R.
    • Rosekrans S.L.
    • McLean C.M.
    • Vlaming H.
    • van den Brink G.R.
    • Bots M.
    • Medema J.P.
    • Dannenberg J.H.
    HDAC1 and HDAC2 collectively regulate intestinal stem cell homeostasis.

    FASEB J. 2015; 29: 2070-2080

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

* Copy This Password *

* Type Or Paste Password Here *

47 740 Spam Comments Blocked so far by Spam Free Wordpress

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>